
1

Bot Lab: Ground Vehicle from Low-level
Control, SLAM to Planning and Exploration

Zheyuan Zhang, Yu Zhu, Manu Aatitya Raajan Priyadharshini, Thirumalaesh Ashokkumar
{zheyuan, jyuzhu, rpmanu, thiruchl}@umich.edu

Abstract—The MBot mobile robotics project aims to
develop an autonomous ground vehicle to navigate in the
unknown environment. There are four key components of
the project. Low-level control executes commands from
high-level system to drive the robot based on velocity
models and kinematics with a PID controller. Simultaneous
Localization and Mapping (SLAM) is at the core of MBot
project which allows the robot to use LiDAR to build
a map of the environment and localize in that map at
the same time. We developed mapping module, particle
filter with action model and sensor model. Additionally,
we implemented AStar (A*) heuristic search with pruning
algorithm for path planning and frontier-guided algorithm
for exploration. We present the theory and detailed imple-
mentation with experimental results for the project in this
report.

I. INTRODUCTION

MBot would be an autonomous ground vehicle, that
would have the ability to explore locations in which it
is deployed while avoiding obstacles. In this process,
it would have capabilities to generate and keep track
of maps of the surrounding environment, and also be
capable of locating itself in the map. In essence, the bot
has the following functionalities:

A. Low-level Control

The low-level control system is based on velocity
models and kinematics of the bot running in control
loops, that can handle the commands arising from the
high level planner. While the robustness of higher level
systems plays a significant role in overall accuracy and
success, the importance of the low level controllers
cannot be understated as the accuracy of the actuators
and it’s corresponding actuation significantly influence
the errors that are accrued by the system, and it’s
compounding effects over time. Thus, to achieve high
accuracy in our low level control, we will implement a
feedforward with PID controller as shown in Fig II-B2
. The hardware of our system with respect to actuation
and control consists of a differential drive system with
two wheels and motors supported by a castor wheel
at the rear. We use the Pololu 12V brushed DC gear
motors with 20 count/revolution resolution and a 78:1
gear ratio. The motor is driven by a motor driver. We use

an MPU9250 9DOF IMU, for our gyro measurements.
The control is handled by a Pico board, which acts as the
interface for control between a Raspberry Pi(RPi) and
actuators. In other words, the communication between
the motors and the sensors go through the Pico Board,
but the inherent processes are processed on the RPi.
Also, the system is powered by a 12V battery pack.

B. SLAM

On top of the control system, we have the ’SLAM’
- Simultaneous Localization and Mapping architecture,
that can build maps of the environment using data
from the LiDAR; concurrently ’localizing’ our bot on
the generated map. The SLAM layer primarily defines
the ’intelligence’ of the bot on being able to able to
execute a well defined traversal task. For any deployed
mobile bot, the ability to ’know’ it’s environment and
to identity it’s own location in said environment is
a foundational requirement since any conceivable high
level task is dependent on this requirement. To achieve
this, informative data of the environment is necessary.
We use a LiDAR to generate maps of the environment
and locate obstacles in the vicinity of the bot. Using this
information and the Particle Filter localization algorithm,
we implement a solution to the SLAM problem.

C. Path Planning

Once we have low level control and SLAM function-
ing, we need to provide solutions to how the bot would
handle user defined tasks like moving from one location
to another while avoiding obstacles. That requires a
path planning algorithm like AStar, that would generate
efficient path for the bot to follow. This level takes in
the map generated as input along with current location
and goal as input, to generate the path. These points are
taken as inputs by the lower level controller.

D. Exploration

We would also need an algorithm that can iteratively
generate the ’goal position’ described in the previous
section, if the bot in an ’unknown(to the bot and the user)
environment’, implying no possibility for explicit set of
commands from the user. In these scenarios, we will have
an exploration algorithm at the highest level, that can aid

2

in understanding an unknown environment by moving
through it deterministically, with the goal of reaching
all ’corners/regions’ of the environment, to generate a
complete map.

The above defined features are drawn from the moti-
vations for this work, which is to build the foundations
for a robot that have major and vast applications across
multiple domains including public/human safety(going
into areas with explosion threats, nuclear reactor inspec-
tion), space exploration(assessing/exploring environment
of any non terrestrial region), autonomous vehicles(a
scaled Mbot with seats), service sector(cleaning robots),
etc., In general, the any bot with the features of a Mbot
can be used in applications where the environment is
dangerous or impractical for humans to be in, or to
eliminate the requirement of man power and man time
for mundane tasks.

II. METHODOLOGY

A. Overview of the development

This section describes in detail the development of the
MBot. In terms of hardware, we construct and integrate
3 layers.

1) Hardware: At the base layer, we will have the
wheels, motors, castor wheel, motor driver and the Pico
board mounted onto a chassis. At the second layer, we
will have the relevant sensors for perception relevant
electronics. Thus, this layer we will include the RPi, a
PiCamera mounted on a chassis plate. And at the top,
we will mount the LIDAR, specifically the RP-LIDAR.
Once the three layers of the hardware are assembled and
integrated, we can begin to power up the bot and begin
the software development.

2) Software: At the lowest level, commands to related
to the mobility of the robot, are routed through the Pico
board. The Pico runs the firmware for the control of
the actuators. The RPi is the ’computer’, that handles
SLAM, Path planning operations and processing Cam-
era and LIDAR information. The RPi also interfaces
with the Camera and LIDAR. Fig 1, shows the flow
of information between the software modules on the
MBot. And the flow of information is parsed through the
LCM (Lightweight Communications and Marshalling)
protocol. Given this structure, we begin by developing

Fig. 1. Software - Information Flow (Credits: lab manual)

low level control following which we discuss SLAM,
path planning and exploration.
B. Kinematics and Control

1) Kinematics: We update the position estimate using
the encoders and the heading sensor. However using
them as standalone setup will lead to accumulation of
errors and thus, we use this as an initial estimate before
it’s updated with information from other sensors. We
will use the wheel velocity model to update odometry
information. For the wheel velocity model, if vR, vL
represented the velocities of the right and left wheel
respectively, then for an angular velocity ω we have,

R = b
2

(
vR+vL
vR−vL

)
vR = ω

(
R+ b

2

)
vL = ω

(
R− b

2

) (1)

where b is the base length of the robot. The odometry
pose is updated by

∆θodo = 1
b (∆sR −∆sL)

∆d = 1
2 (∆sR +∆sL)

∆x = ∆d cos(θt−1 +∆θodo/2)

∆y = ∆d sin(θt−1 +∆θodo/2)

(2)

where θ is the previous heading of the robot, ∆sR and
∆sL are the distance traveled by left and right wheels
which are obtained by the measurement of encoders in
time interval ∆t. Note that here we only use the ∆θodo
obtained from odometry. This term can be replaced by
∆θgyro obtained by gyroscope, which will be mentioned
later. In our case, the value of b = 0.162 m, ∆t =
0.02 (50Hz).

We try to validate the odometry model by moving the
robot for known distances and turning angles. For in-
stance, when the robot moved along a known square, the
orientation of its trajectory was offset by an angle, while
a small arc was also observed between each of the four
line segments. These are systematic errors whose effects
can be reduced. The arc in moving through a straight line
could be explained by the differences in wheel diameters
(one wheel moves faster). The offset in the square angle
could be explained by the uncertainty in the wheel
base. The UMBmark procedure [1], which accounts for
difference in wheel diameters and uncertainty in wheel
base, was performed to correct systematic errors. After
trials, the ratio of the wheel base, Ed = DR/DL was set
to 1.1, while Eb = bactual/bnomial was set to 0.95. Here,
DR, DL represent the right and left wheel diameters.
bactual and bnomial represent the actual and nominal
wheel base.

As uncertainty in orientation is a primary contributor
to odometry errors, the gyro was used to help find more
precise orientation. However, gyro itself drifts and is
calibrated every few time steps, ∆T = 0.02. We fuse
odometry with a heading estimate from gyro, as is shown

3

in Alg. 1. We ignore the gyro if we aren’t moving
since gyro’s measurement is based on varying speeds
across timesteps. At the same time, we rely on the gyro
more than odometry if the difference is significant. After
multiple experiments and measured the ∆GO values, we
found that the error of ∆θgyro was almost always at the
order of 10−3 rad/sec while ∆θodo might have abnormal
values when the robot turns. Since the robot traveling at
relatively low speeds, we decided to use the gyro value
predominantly for ∆θ.

Algorithm 1 Gyrodometry
Input: θt−1, ∆θgyro,t and ∆θodo,t
Output: θt

1: ∆G0,t = ∆θgyro,t −∆θodo,t
2: if |∆GO,t| > ∆θthres then
3: θt = θt−1 +∆θgyro,t∆T
4: else
5: θt = θt−1 +∆θodo,t∆T
6: return θt

2) PID Control: The control system we developed is
a feedforward with PID. The feedforward takes the de-
sired motor speed as input and outputs the corresponding
PWM duty cycle. For this, we use our motor calibration
calibration model, whose results are shown in Fig. 2 and
Table I.

Fig. 2. Fitted motor calibration results

TABLE I
FITTED MOTOR CALIBRATION PARAMETERS

Left motor Right motor
Slope (positive) 1.506 1.452

Intercept (positive) 0.106 0.127
Slope (negative) 1.476 1.472

Intercept (negative) -0.125 -0.124

The feedback component is derived from the encoder
readings which is then compared to the reference ve-
locity. The encoder feedback is run through a low pass

filter before being used. However, the effects of using
a low pass filter was found to be minimal and thus
was ignored in later stages. The error between reference
and the filtered feedback is the input for the PID. Also,
the output of the integrator was also passed through
a saturation function, which clamped the output to the
range [-1, 1], before it was propagated. To tune the values
of kp, ki, kd, we observe the values of the steady state
error, rise time and overshoot and visual performance
of the robot over a square trajectory. After tuning, the
parameter values are shown in Table II.

TABLE II
PARAMETER VALUES FOR PID

Parameters kp ki kd

Values 1 0.15 0.05

Fig. 3. PID with Feedforward control (Credits: lecture slides)

Also, since we were satisfied with the results of
the wheel control PID, we decided not to implement
a Frame velocity controller. However, if one were to
implement the frame velocity controller, they would use
the following equations to implement the PID loop:

vR = vfw + 1
2ωb

vL = vfw − 1
2ωb

(3)

where vfw is the forward velocity.
3) Motion Controller: Now that we have a function-

ing control loop, we will implement the higher level
motion controller that can take waypoints as input and
generate real-time velocities based on the difference
between waypoints and current odometry pose (actually
the odometry pose will be replaced by SLAM pose
after SLAM is implemented). We use the “SmartManeu-
verController”, which decouples rotation and translation
movements. The way to generate forward velocity v and
angular velocity ω is shown in Eq. (4)

∆x = xtarget − xpose

∆y = ytarget − ypose

∆s =
√

∆x2 +∆y2

α = arctan ∆y
∆x − θpose

β = θtarget − α− θpose

v = ks ·∆s

ω = ka · α+ kb · β

(4)

4

where the subscript “target” represents the target way-
point, the subscript “pose” represents the current pose.
ks, ka, and kb are hyperparameters. The values of
these parameters in our case are given in Table III.
We observed that the performance of the robot was
unsatisfactory if we have the term kb, so we set it to
be zero. The forward velocity and angular velocity are
also clamped by some preset values. We also clamped the
forward acceleration, i.e. the change in forward velocity
between two adjacent time steps, to be within [-0.25,
0.25], to prevent the robot from toppling if it moves at
high speeds. The threshold for reaching a target pose is
set to |∆x|and|∆y| < 0.02m.

TABLE III
PARAMETER VALUES IN MOTION CONTROLLER

Parameters ks ka kb

Values 1 2 0

C. SLAM

SLAM is the integration of a mapping algorithm
and a localization algorithm. The algorithm used for
localization is the Monte Carlo Localization (MCL)
using particle filters. The interaction of SLAM system
components is shown in Fig. 4.

1) Localization: MCL algorithm is a non parametric
version of the Bayes’ filter and requires action model
and sensor model to be defined to update particle states
and weights. In essence, the MCL can be represented as,

P (x0:t|z1:t, u1:t) = ηP (zt|xt)P (xt|xt−1, ut)

P (x0:t−1|z1:t−1, u1:t−1)

Here, P (zt|xt) is the likelihood obtained from sensor
model. P (xt|xt−1, ut) is the action model and η is
a normalizing factor used since the “evidence” of the
Baye’s filter is not practically computable. Each of the
particles serve as an estimate of the robot pose. In the
particle filter, new poses are proposed by the action
model. Then sensor model will determine the weight
of each particle based on the current map.The weights
imply reliability of each particle. Finally, the particles
are resampled based on their normalized weights. The
slam pose is obtained by the weighted sum of resampled
particles.

Action model:
The odometry action model [2] with two uncertainty

parameters is used to update the pose of particles.
Suppose the current time step is t and the previous step
is t−1. Denote ∆x, ∆y, and ∆θ as the change in robot
pose from the pervious time step to current one. Define
∆s =

√
∆x2 +∆y2 and α = arctan(∆y,∆x)− θt−1.

We assume that the model errors, which include ε1, ε2,
and ε3, follow Gaussian distribution: ε1 ∼ N (0, k1|α|),
ε2 ∼ N (0, kbaye2|∆s|), and ε3 ∼ N (0, k1|∆θ − α|),
where k1 and k2 are hyperparameters. Given the previous

Fig. 4. Block diagram for the SLAM system

particle pose [xt−1, yt−1, θt−1], the new [xt, yt, θt] can
be obtained by xt

yt

θt

 =

 xt−1

yt−1

θt−1

+
 (∆s+ ε2) cos (θt−1 + α+ ε1)

(∆s+ ε2) sin (θt−1 + α+ ε1)

∆θ + ε1 + ε3

From the equation above, we can conclude that the
magnitude of k1 will affect the distance the particle
translates and k2 is related to the angle the particle
rotates. If they are too small, the particles will follow
the same relative translation and rotation as the odometry
pose. On the contrary, if they are too large, the particles
will be extremely sparse and the slam pose (action only)
will be a mess. When tuning these two parameters, we
first set relatively large values which are around 0.1.
We decrease k1 if the translation part of slam pose
differs a lot from odometry pose. Similarly, if the rotation
angle of slam pose differs a lot from odometry pose, k2
will be decreased. After experiments, the final values of
uncertainty parameters are shown in Table IV.

TABLE IV
UNCERTAINTY PARAMETERS OF ACTION MODEL

Parameters k1 k2

Values 0.005 0.025

Sensor model:
In this part, the weight of each particle is updated at

each time step. The weight of the m-th particle at time
t can be expressed as

wm
t = P (zt|xm

t) =

k∏
i=1

P (zit|xm
t)

where zkt represents the length of k-th scan at time t. The
simplified likelihood field model [2] is used to update the
weights, which is shown in Alg. 2 where θk is the angle
of the k-th scan with respect to the robot frame. We
only take LIDAR scans that are blocked by obstacles,
which means their logodds are positive. Otherwise, the

5

scan does not hit anything and we do not take them
into account for the likelihood. After the weight of all
the particles are obtained, these weights are normalized
and the method of low variance sampling [2] is used to
resample particles based on their weights.

Algorithm 2 Sensor model
Input: Particle pose xm

t and LIDAR scans zt
Output: The weight for the input particle

1: wm
t = 0

2: for all k do
3: if zkt < zmax then
4: xzk

t
= xt + zkt cos(θ + θk)

5: yzk
t
= yt + zkt sin(θ + θk)

6: if logodds(xzk
t
, yzk

t
) > 0 then

7: wm
t = wm

t−1 + logodds(xzk
t
, yzk

t
)

8: return wm
t

2) Mapping: An occupancy-grid-based map is used
to generate a map of the environment for the MBot.
The occupancy grid-based approach abstracts the map
as MxN cells, with each cell storing the probability of it
being occupied. The map is obtained using Baye’s filter
update of the cell occupancy using Lidar ray rasterization
for the grid cells using Breshenham’s algorithm. Log
Odds are used instead of probabilities as the log function
converts the posterior update to addition and subtraction,
making it easier with dealing small numbers. A beam
sensor model is used, which updates the posterior belief
of the cell being occupied based on whether the ray
terminates the cell. The mapping function is done in
two parts. First, if the cells are at the ray’s endpoints, it
implies the possibility of it being an obstacle and thus,
the log odds of the cell are increased. Following this, we
also update the values of the log odd of cells between the
endpoint and the current robot pose by ray rasterization
using Breshenham’s line algorithm. The hit log odds
value is set to +3, and the miss log odds value is set
to -2. The reasoning is based on the fact that the lidar
has a high accuracy and hence we weight it more and a
higher increase in log odds on obstacle detection. But, to
eliminate noise, a two-time decrease in the log Odds is
required to nullify the effect of a ray falsely identifying
an unoccupied cell as an obstacle.
D. Planning

With a controller and SLAM algorithm in place, we
can now perform mobility tasks in a given environment.
To do so, the bot has to be able to generate a path
between any two points. There are many ways of
viewing this problem. However, in this context, we will
identify algorithms that solves the grid/graph search
problem. This is because, it is more convenient to
consider the ground of the environment as a grid space,
discretized into some n * n space. We can denote any

such grid as some a * b * s where ’a’ denotes the length
of the grid, ’b’ denotes the width of the grid, and ’s’ is
the length of each grid.
In order to do path planning, we need to have a working
obstacle distance grid. That is, we need a grid where
each cell will contain within itself, the distance to it’s
nearest obstacle. Any cell that contains LogOdds> 0 is
considered an obstacle as defined in SLAM. And we
only travel towards a particular cell, if the value of the
cell in the obstacle distance grid is more than the robot
radius. And we use the Brushfire algorithm, that uses a
priority queue.

1) A Star: We consider the AStar (A*) search is the
algorithm we consider for planning. It is a heuristic
search algorithm which can find an optimal path between
two locations in a graph. The map can be considered as
a graph where the occupancy grid cells represent nodes
and connections between grid cells represent edges. The
A* algorithm requires a g-cost function and a h-cost
function (heuristic). The g-cost function computes the
distance from start node to current node. The h-cost
function computes the distance from current node to
goal node. If the heuristic function is admissible which
the actual path cost is always greater than or equal to
the heuristic cost at the current node, A* algorithm will
always return an optimal path. We use a costg of 1
if travelling vertically or horizontally, and use a costg
of 1.4 if travelling diagonally. For heuristic, we use the
Manhattan distance. Finally, the path is returned by using
parent node to traverse back from the goal node to the
start node and then reverse it.

An A* generated path has consecutive nodes along
the path. However, given the discretization, the gener-
ated path will have many way points to follow which
would significantly lower the speed of robotic motion.
Therefore we designed a path pruning algorithm in 3.

E. Exploration:

Exploration is another key algorithm for robot to
enable movement in unknown environment, namely,
without a map. In real world scenario, there doesn’t
exist a preset path for mobile robot to follow. Therefore,
robot has to explore the unknown environment based on
LiDAR information. Inherit LiDAR algorithm generates
frontier which is the boundary of explored area and
unexplored area. The basic idea for exploration is to
follow frontiers until there’s no reachable frontier left,
which indicates the exploration has already done. How-
ever, simply following an arbitrary point on the frontier
is not robust for complex environment. Therefore, we
designed an algorithm to perform robust exploration in
unknown environment which illustrated in 4.

6

Algorithm 3 Path pruning
Input: A* path nodes, obstacle distance grid grid
Output: Pruned path consisting of robot poses

1: initialize path to an empty list
2: ϵ← 0.005
3: for node in nodes do
4: pose← convert node to global pose
5: if node is start node then
6: θpose ← 0
7: push pose to path
8: poseprev ← pose
9: else if node is goal node then

10: θpose ← atan2(ypose − yprevpose , xpose − xprev
pose)

11: push pose to path
12: else
13: θpose ← atan2(ypose − yprevpose , xpose − xprev

pose)
14: poseprev ← pose
15: if |θpose − θprevpose | > ϵ then
16: push poseprev to path
17: return path

In the algorithm, we first find a goal position from
frontiers. Notice that it will be the mid point of first
cells of two frontiers if the total number of frontiers
is 2 or 3. Secondly, the diffusion stage iterates from
one point gradually expand to further surrounding points
to find a point that satisfies the conditions. Thirdly, it
generates a “fake path” for robot to follow to avoid
termination because we found out that the exploration
will fail (terminate) if A* planner cannot find a solution
from current robot position to goal position which leads
to output a path of length 0. After investigation into
this issue, it is very likely that it is caused by system
asynchronicity (out-sync). Therefore, by generating a
“fake path”, it allows the system to synchronize and
then move towards the frontier. Additionally, notice that
poserobot +0.01 means adding 0.01 to x, y and theta of
the robot. This small offset will not change the current
robot position too much because in most cases, the robot
system will be able to follow a frontier for a generated
path with length greater than 0. Therefore, this design
makes the robot has an almost 100% success rate on
exploring and returning home in small-size to medium-
size maze.

III. RESULTS

A. Odometry and PID control

1) Tracking Velocity Setpoint: Figure 5 provides the
wheel speeds as a function of time when a given setpoint
of 0.5 m/s is provided. The rise time is satisfying,
but the oscillations at steady state are quite observable.
However, when increasing the Kd gains the system
becomes unstable and hence left at the current stage.

Algorithm 4 Exploration
Input: frontiers, poserobot, occupancy grid map, ob-

stacle distance grid grid, A* planner planner
Output: Path consisting of robot poses

1: initialize path to an empty list
2: rrobot ← radius of the robot
3: ϵ← 0.1
4: if number of frontiers == 1 then
5: pointgoal ← centroid of frontiers[0]
6: else if number of frontiers == 2 or number of

frontiers == 3 then
7: pointgoal ← mid point of frontiers[0].cells[0]

and frontiers[1].cells[0]
8: else
9: pointgoal ← centroid of frontiers[1]

10: nodegoal ← convert pointgoal to grid cell
11: for i← 0 to 24 step 3 do
12: updatex = {0, 0, i, i, i,−i,−i,−i}
13: updatey = {i,−i, 0, i,−i, 0, i,−i}
14: for j ← 0 to 7 do
15: nodegoalsrnd.x← xgoal

node + updatex[j]
16: nodegoalsrnd.y ← ygoalnode + updatey[j]
17: odds← map.logOdds(nodegoalsrnd)
18: distance← grid(nodegoalsrnd)
19: ∆robot

node ← Manhattan distance between node
and robot

20: if odds < 0 and distance > rrobot and
∆robot

node > ϵ then
21: posegoal ← convert nodegoalsrnd to global point

22: path← planner(poserobot, posegoal)
23: if length of path == 0 then
24: initialize path to an empty list
25: push poserobot to path
26: push poserobot + 0.01 to path
27: return path

Fig. 5. Wheel Speeds vs Time plot

7

2) Moving forward and returning to the same lo-
cation: Figure 6 provides the raw linear and angular
velocities on driving forward and returning back to the
same location. It can be observed that the velocities have
a lot of noise that must be filtered especially in the case
of angular velocities. A low pass filter has been used to
tackle this problem.

Fig. 6. Move forward and return

3) Looping square path: Figure 7 provides the posi-
tion and angular velocity plots for driving the bot around
a square path 4 times. The odometry measurements
drift over time and hence a calibration procedure like
UMBMark has been performed to address this issue and
the calculated values and procedure have been explained
in the Kinematics and Control Section.

Fig. 7. Drive Square 4 times

4) Position plots for various set velocities: Figure 8
gives the (x,y) position and heading vs time for different
set velocities. When v = 0.25 m/s and v = 0.5 m/s, the

time is set to be 2s. For v = 1 m/s, the time is set to
be 1s. From the plots, it can be observed that the noise
in the heading increases as the linear velocity of the bot
increases. The measured path deviates to either left or
right side of the desired path. The error may be caused
by wheel slipping under high acceleration and limited
resolution of wheel sensors. Finally, we can also find
that the robot only moves about 0.65 m when v = 1 m/s,
much smaller than the theoretical value 1m. This can be
explained by the fastest speed of left and right wheels
shown in Table V.

Fig. 8. Pose plots for different velocities

TABLE V
SLOWEST AND FASTEST SPEED

Angular speed (rad/s) Translation speed (m/s)
Min 0 0
Max 8.591 0.661

B. Mapping:

Figure 9 represents the map obtained using SLAM
when simulated using the obstacle slam log file. The
map is of good quality, as seen in Figure 9.

C. SLAM

1) Particle Filters: The following table gives the
median time taken to execute particle filter computations
on running through the “obstacle grid maze” log file 5
times. The time taken increases almost linearly.

From Table VI, it can be inferred that the maximum
number of particles that can be used to run on a Pi
running at 10 Hz (at 0.1 s for each update) is between
15500 - 16000 particles.

8

Fig. 9. Obstacle SLAM 10mx10mx5cm Map

TABLE VI
PARTICLE FILTERS TIME

Number of Particle Median Time taken (ms)
100 6.735
200 13.500
300 20.582
500 33.776

1000 63.100
10000 658.135
15000 957.860
16000 1010.580

2) Drive Square - SLAM: Figure 10 below gives the
spread of particles at the specified locations when driving
around a square using the drive square log file.

Fig. 10. Particle Spread driving square with 300 particles

Figure 11 gives the slam vs the odometry pose when
driving along a square using the drive square log file.
The error statistics from the poses are as follows, RMS
Error in x = 3.7 cm, RMS Error in y is 2.7 cm and RMS
Error in θ is 1.3 deg. Generally, we can conclude that the
slam pose is quite close to the odometry pose with some
small errors. Since the errors oscillate around 0, they

may be caused by randomness of updating the particle
poses in SLAM. The accuracy could be improved by
properly increasing the number of particles or reducing
the standard deviation in action model.

Fig. 11. Slam Pose vs Odometry Pose when driving around square

3) Convex Path - SLAM: Figure 12 gives the SLAM
vs the odometry pose when driving along a convex maze
using the obstacle grid log file. We can conclude that
the slam pose we obtained is better than odometry pose.
In addition, table VII indicates that the overall RMS is
acceptable. But the slam pose still deviates a bit from
the true pose. The error mainly occurs during the turning
process. Further tuning k1 value in the action model may
help cope with this problem.

4) Checkpoint 2 - SLAM: The MBot follows the
path published by the Python script in checkpoint 1. In
Appendix A, Figure 13 shows the maze we used for
demonstrating SLAM and Figure 14 shows the SLAM
mapping result with SLAM path and odometry path.

Fig. 12. Comparison between different poses: driving through convex
world

9

TABLE VII
SLAM PERFORMANCE STATISTICS FOR A CONVEX MAZE

RMS Error x 7 cm
RMS Error y 4 cm
RMS Error θ 2.31 deg

D. Planning

1) A* search: The A* test statistics are as follows in
Table VIII

TABLE VIII
TIMING INFORMATION FOR SUCCESSFUL PLANNING ATTEMPTS

(US)

Parameters Value
Min 353

Mean 4843.25
Max 10301

Median 2969
Std dev 3689.77

2) Exploration: For competition task 2, we are aimed
to let the MBot automatically explore the unknown
environment (maze) without giving a designated path
or odometry command. The robot will keep exploring
until the environment has been fully explored. After
that, the robot will return to the home position (starting
position) automatically to finish the task. In Appendix
B, Figure 15 shows the maze we used for demonstrating
competition task 2 (exploration and returning home) and
Figure 16 shows the SLAM mapping result with SLAM
path and odometry path.

IV. DISCUSSION AND CONCLUSION

In this project, we developed a ground vehicle which
capable of automatically exploring and navigating in the
unknown environment. However, there are still some
improvements we can make to let the robot generally
perform better as an unmanned vehicle. From the results
presented above, we can see that, after bug fixes and
modification to the algorithms, the robot has success-
fully accomplished competition task 2 (exploration and
returning home) which we failed to accomplish in the
competition day because of bad allocation error. After
investigation, we found out that it is caused by using
a potentially infinite while loop that costs too much
memory but other parts of the system create new objects
in the meantime which eventually lead to bad allocation.
The reason of being potentially infinite loop is because
we used an algorithm to randomly sample points within
a L1 square range of the goal point computed from

the frontiers information. Thus, it is very likely to run
into the case where we have a bad luck of failure
to randomly sampled a point which satisfy the while
loop exit conditions. Due to this issue, we change the
algorithm to a for loop which guarantees to stop after
all the iterations. This eliminates the bad allocation error.
We also modified some parts of the exploration algorithm
to make it more robust.

Additionally, the SLAM mapping result for competi-
tion task 2 is not very clear which caused by overlapping
deviations of the map. This is because our localization
algorithm is not very accurate, i.e. the robot on the same
pose (x, y, theta) on the physical map for different time
step are actually different for the SLAM pose. Then
the new laser scan updates on a deviated map which
overlaps upon the original map. Therefore, we may need
to tune hyper-parameters involved in the particle filter
including action model and sensor model. Moreover, new
algorithms may need to be implemented to address this
issue.

REFERENCES

[1] L. F. J. Borenstein, “Umbmark — a method for measuring,
comparing, and correcting dead-reckoning errors in mobile
robots.” [Online]. Available: http://www-personal.umich.edu/
∼johannb/Papers/umbmark.pdf

[2] S. Thrun, “Probabilistic robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[3] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling
and Control. Wiley, 2005. [Online]. Available: https://books.
google.com/books?id=wGapQAAACAAJ

[4] H. Choset, “A-star lecture notes.” [Online]. Available: https://www.
cs.cmu.edu/∼motionplanning/lecture/AppH-astar-dstar howie.pdf

[5] D. L. Poole and A. K. Mackworth, “Artificial intelligence:
Foundations of computational agents, poole & mackworth -
multiple path pruning.” [Online]. Available: https://artint.info/2e/
html/ArtInt2e.Ch3.S7.SS2.html

[6] A. Patel, “Introduction to astar.” [Online]. Available: https:
//www.redblobgames.com/pathfinding/a-star/introduction.html

[7] S2T5, “task2 - competition.” [Online]. Available:
https://drive.google.com/file/d/1J zVYvnbyBrE59yy
oLomuH5xp3FldVF/view?usp=sharing

V. APPENDIX

A. Checkpoint 2 maze - SLAM

Results from checkpoint 2:

Fig. 13. MBot following the path in real environment - checkpoint 2
maze

http://www-personal.umich.edu/~johannb/Papers/umbmark.pdf
http://www-personal.umich.edu/~johannb/Papers/umbmark.pdf
https://books.google.com/books?id=wGapQAAACAAJ
https://books.google.com/books?id=wGapQAAACAAJ
https://www.cs.cmu.edu/~motionplanning/lecture/AppH-astar-dstar_howie.pdf
https://www.cs.cmu.edu/~motionplanning/lecture/AppH-astar-dstar_howie.pdf
https://artint.info/2e/html/ArtInt2e.Ch3.S7.SS2.html
https://artint.info/2e/html/ArtInt2e.Ch3.S7.SS2.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://www.redblobgames.com/pathfinding/a-star/introduction.html
https://drive.google.com/file/d/1J_zVYvnbyBrE59yy_oLomuH5xp3FldVF/view?usp=sharing
https://drive.google.com/file/d/1J_zVYvnbyBrE59yy_oLomuH5xp3FldVF/view?usp=sharing

10

Fig. 14. SLAM mapping result with SLAM path and odometry path

B. Competition task 2 maze - SLAM

Fig. 15. Maze of competition task 2 - explore and return home

Fig. 16. SLAM mapping result of competition task 2 - exploration
and returning home with SLAM path and odometry path

	Introduction
	Low-level Control
	SLAM
	Path Planning
	Exploration

	Methodology
	Overview of the development
	Hardware
	Software

	Kinematics and Control
	Kinematics
	PID Control
	Motion Controller

	SLAM
	Localization
	Mapping

	Planning
	A Star

	Exploration:

	Results
	Odometry and PID control
	Tracking Velocity Setpoint
	Moving forward and returning to the same location
	Looping square path
	Position plots for various set velocities

	Mapping:
	SLAM
	Particle Filters
	Drive Square - SLAM
	Convex Path - SLAM
	Checkpoint 2 - SLAM

	Planning
	A* search
	Exploration

	Discussion and Conclusion
	References
	Appendix
	Checkpoint 2 maze - SLAM
	Competition task 2 maze - SLAM

